Publications
Why is the thermalization of excited electrons in semiconductor nanoparticles so rapid? Studies on CdSe nanoparticles. Chemical Physics Letters. 2003 ;373:284-291.
. Visible to infrared luminescence from a 28-atom gold cluster. Journal of Physical Chemistry B. 2002 ;106:3410-3415.
. Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster. Chemical Physics Letters. 2002 ;356:240-246.
. Transfer times of electrons and holes across the interface in CdS/HgS/CdS quantum dot quantum well nanoparticles. Chemical physics letters [Internet]. 2002 ;361(5-6):446-452. Available from: http://dx.doi.org/10.1016/S0009-2614(02)01001-1
. Thermal reshaping of gold nanorods in micelles. Journal of Physical Chemistry B. 1998 ;102:9370-9374.
. Spectroscopic determination of the melting energy of a gold nanorod. Journal of Chemical Physics. 2001 ;114:2362-2368.
. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Journal of Physical Chemistry B. 1999 ;103:8410-8426.
. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Journal of Physical Chemistry B. 1999 ;103:4212-4217.
. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. Journal of Physical Chemistry B. 1999 ;103:3073-3077.
. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. The Journal of Physical Chemistry B [Internet]. 1999 ;103(16):3073 - 3077. Available from: http://dx.doi.org/10.1021/jp990183f
. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. The Journal of Physical Chemistry B [Internet]. 2005 ;109(20):10531 - 10532. Available from: http://dx.doi.org/10.1021/jp058091f
. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry. 2000 ;19:409-453.
. Room temperature optical gain in CdSe nanorod solutions. Journal of Applied Physics. 2002 ;92:6799-6803.
. The pump power dependence of the femtosecond relaxation of CdSe nanoparticles observed in the spectral range from visible to infrared. The Journal of chemical physics [Internet]. 2002 ;116:3828. Available from: http://link.aip.org/link/doi/10.1063/1.1446851
. Picosecond self-induced thermal lensing from colloidal silver nanodisks. Journal of Physical Chemistry B. 2004 ;108:5230-5234.
. Picosecond Self-Induced Thermal Lensing from Colloidal Silver Nanodisks. The Journal of Physical Chemistry B [Internet]. 2004 ;108(17):5230 - 5234. Available from: http://dx.doi.org/10.1021/jp049943z
. Optical Properties and Ultrafast Dynamics of Metalic Naocrystals. Annual Review of Physical Chemistry [Internet]. 2003 ;54(1):331 - 366. Available from: http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759
. New transient absorption observed in the spectrum of colloidal CdSe nanoparticles pumped with high-power femtosecond pulses. Journal of Physical Chemistry B. 1999 ;103:10775-10780.
. Medium effect on the electron cooling dynamics in gold nanorods and truncated tetrahedra. Advanced Materials. 2003 ;15:393-+.
. The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chemical Physics Letters. 2000 ;317:517-523.
. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. Journal of Physical Chemistry B. 2000 ;104:6152-6163.
. Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence. Journal of Physical Chemistry A. 1999 ;103:1165-1170.
. How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study. Chemical Physics Letters. 1999 ;315:12-18.
. How does a gold nanorod melt?. Journal of Physical Chemistry B. 2000 ;104:7867-7870.
. Hot electron relaxation dynamics of gold nanoparticles embedded in MgSO4 powder compared to solution: The effect of the surrounding medium. Journal of Physical Chemistry B. 2002 ;106:945-955.
.