Publications
High-Frequency Mechanical Stirring Initiates Anisotropic Growth of Seeds Requisite for Synthesis of Asymmetric Metallic Nanoparticles like Silver Nanorods. Nano Letters. 2013 ;13:4739-4745.
. Hollow gold nanorectangles: The roles of polarization and substrate. Journal of Chemical Physics. 2013 ;139.
. Inducing Cancer Cell Death by Targeting Its Nucleus: Solid Gold Nanospheres versus Hollow Gold Nanocages. Bioconjugate Chemistry. 2013 ;24:897-906.
. The Last Step in Converting the Surface Plasmonic Energy into Heat by Nanocages and Nanocubes on Substrates. Small. 2013 ;9:3934-3938.
. Plasmonic enhancement of photodynamic cancer therapy. Journal of Photochemistry and Photobiology a-Chemistry. 2013 ;269:34-41.
. Properties of pi-Conjugated Fluorescence Polymer-Plasmonic Nanoparticles Hybrid Materials (vol 116, 13336, 2012). Journal of Physical Chemistry C. 2013 ;117:4876-4876.
. Rapid and Efficient Prediction of Optical Extinction Coefficients for Gold Nanospheres and Gold Nanorods. Journal of Physical Chemistry C. 2013 ;117:23950-23955.
. Substrate Effect on the Plasmonic Sensing Ability of Hollow Nanoparticles of Different Shapes. Journal of Physical Chemistry B. 2013 ;117:4468-4477.
. Surface-Enhanced Raman Spectroscopy for Real-Time Monitoring of Reactive Oxygen Species-Induced DNA Damage and Its Prevention by Platinum Nanoparticles. Acs Nano. 2013 ;7:7524-7533.
. Thermal/Electrochemical Growth and Characterization of One-Dimensional ZnO/TiO2 Hybrid Nanoelectrodes for Solar Fuel Production. Journal of Physical Chemistry C. 2013 ;117:18502-18509.
. Thin to Thick, Short to Long: Spectral Properties of Gold Nanorods by Theoretical Modeling. Journal of Physical Chemistry C. 2013 ;117:18653-18656.
. Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces. Journal of the American Chemical Society. 2012 ;134:6920-6923.
. Antiandrogen Gold Nanoparticles Dual-Target and Overcome Treatment Resistance in Hormone-Insensitive Prostate Cancer Cells. Bioconjugate Chemistry. 2012 ;23:1507-1512.
. Detecting and Destroying Cancer Cells in More than One Way with Noble Metals and Different Confinement Properties on the Nanoscale. Accounts of Chemical Research. 2012 ;45:1854-1865.
. Different Methods of Increasing the Mechanical Strength of Gold Nanocages. Journal of Physical Chemistry Letters. 2012 ;3:3527-3531.
. Effect of the Dielectric Constant of the Surrounding Medium and the Substrate on the Surface Plasmon Resonance Spectrum and Sensitivity Factors of Highly Symmetric Systems: Silver Nanocubes. Journal of the American Chemical Society. 2012 ;134:6434-6442.
. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews. 2012 ;41:2740-2779.
. Metallic Double Shell Hollow Nanocages: The Challenges of Their Synthetic Techniques. Langmuir. 2012 ;28:4051-4059.
. Nanocatalysts Can Change the Number of Electrons Involved in Oxidation-Reduction Reaction with the Nanocages Being the Most Efficient. Journal of Physical Chemistry C. 2012 ;116:24171-24176.
. The one dimensional photofragment translational spectroscopic technique: intramolecular clocking of energy redistribution for molecules falling apart1. Time-of-Flight Mass Spectrometry and its Applications. 2012 :265.
. Photoelectric Conversion Properties of Dye-Sensitized Solar Cells Using Dye-Dispersing Titania. Journal of Physical Chemistry C. 2012 ;116:4848-4854.
. Properties of pi-Conjugated Fluorescence Polymer-Plasmonic Nanoparticles Hybrid Materials. Journal of Physical Chemistry C. 2012 ;116:13336-13342.
. Real-Time Molecular Imaging throughout the Entire Cell Cycle by Targeted Plasmonic-Enhanced Rayleigh/Raman Spectroscopy. Nano Letters. 2012 ;12:5369-5375.
. .